36 research outputs found

    Thermal expansion behaviour of Invar 36 alloy parts fabricated by wire-arc additive manufacturing

    Get PDF
    Invar 36 alloy is of high interest in various industrial sectors, due to its reduced thermal expansion properties. This study aims to validate Wire-Arc Additive Manufacturing (WAAM) technology as a valid method for manufacturing aerospace tooling in Invar 36. The main novelty and the objective of this work is to study the properties of Invar deposited by WAAM technology and to provide guidelines for the manufacture of parts using this technology. To do so, the thermal expansion behaviour of Invar specimens manufactured using Gas Metal Arc Welding (GMAW)-based WAAM technology and Plasma Arc Welding (PAW)-based WAAM technology is analyzed for subsequent comparison with the values obtained from the laminated Invar sample used as the reference specimen. A wall is manufactured with each technology, for comparative purposes, from which specimens were extracted for the dilatometry test and metallographic analysis. The results of these analyses show the advantages of GMAW technology for the manufacture of Invar alloy parts, as it presents the same thermal expansion behaviour as the laminated reference material with less presence of precipitates and no macrostructural failures such as pores, cracks and lacks of fusion. Furthermore, to conclude, an aeronautical tooling that has been manufactured within this work demonstrated the potential of this technology to manu-facture specialized aeronautical parts.The authors acknowledge the Basque Government for financing the ADDHOC project, HAZITEK 2021 program (ZL-2021/00989) and EKOHEGAZ ELKARTEK program (kk-2021/00092)

    Thread Quality Control in High-Speed Tapping Cycles

    Get PDF
    Thread quality control is becoming a widespread necessity in manufacturing to guarantee the geometry of the resulting screws on the workpiece due to the high industrial costs. Besides, the industrial inspection is manual provoking high rates of manufacturing delays. Therefore, the aim of this paper consists of developing a statistical quality control approach acquiring the data (torque signal) coming from the spindle drive for assessing thread quality using different coatings. The system shows a red light when the tap wear is critical before machining in unacceptable screw threads. Therefore, the application could reduce these high industrial costs because it can work self-governance.This research was funded by the vice‐counseling of technology, innovation and competitiveness of the Basque Government grant agreements IT‐2005/00201, ZL‐2019/00720 (HARDCRAFT project) and KK‐2019/00004 (PROCODA project)

    Analysis of the Machining Process of Titanium Ti6Al-4V Parts Manufactured by Wire Arc Additive Manufacturing (WAAM)

    Get PDF
    In the current days, the new range of machine tools allows the production of titanium alloy parts for the aeronautical sector through additive technologies. The quality of the materials produced is being studied extensively by the research community. This new manufacturing paradigm also opens important challenges such as the definition and analysis of the optimal strategies for finishing-oriented machining in this type of part. Researchers in both materials and manufacturing processes are making numerous advances in this field. This article discusses the analysis of the production and subsequent machining in the quality of TI6Al4V produced by Wire Arc Additive Manufacturing (WAAM), more specifically Plasma Arc Welding (PAW). The promising results observed make it a viable alternative to traditional manufacturing methods.This research was funded by the vice-counseling of technology, innovation and competitiveness of the Basque Government grant agreement kk-2019/00004 (PROCODA project)

    Effect of the Metal Transfer Mode on the Symmetry of Bead Geometry in WAAM Aluminum

    Get PDF
    The symmetrical nature in the case of wall fabrication by wire arc additive manufacturing (WAAM) has been observed in the literature, but it has not been studied as a source of knowledge. This paper focuses on the comparative study of three drop transfer methods employing Gas Metal Arc Welding (GMAW) technology, one of the most reported for the manufacture of aluminum alloys. The transfer modes studied are the well-known pulsed GMAW, cold arc, and the newer pulsed AC. The novelty of the last transfer mode is the reversal of the polarity during the preparation phase of the substance for droplet deposition. This study compares the symmetry of zero beads to determine the best parameters and transfer modes for wire arc additive manufacturing of 5 series aluminum. The pulsed transfer modes show values of 0.6 for symmetry ratio, which makes them more interesting strategies than cold arc with a symmetry ratio of 0.5. Furthermore, the methodology proposed in this study can be extrapolated to other materials manufactured with this technology.The authors acknowledge the Basque Government for financing the HARIPLUS, HAZITEK 2019 program (ZL-2019/00352), and QUALYFAM project (kk-2020/00042)

    Effect of the Heat Input on Wire-Arc Additive Manufacturing of Invar 36 Alloy: Microstructure and Mechanical Properties

    Get PDF
    Invar, also known as FeNi36, is a material of great interest due to its unique properties, which makes it an excellent alterna tive for sectors such as tooling in aeronautics and aerospace. Its manufacture by means of wire arc additive manufacturing (WAAM) technology could extend its use. This paper aims to evaluate the comparison of two of the most widespread WAAM technologies: plasma arc welding (PAW) and gas metal arc welding (GMAW). This comparison is based on the analysis of wall geometry, metallography, and mechanical properties of the material produced by both technologies. The results show a slight increase in toughness and elongation before fracture and worse tensile strength data in the case of PAW, with aver age values of 485 MPa for ultimate tensile strength (UTS), 31% for elongation and 475 MPa, 40% in GMAW and PAW, respectively. All results gathered from the analysis show the possibility of successful manufacturing of Invar by means of WAAM technologies. The novelties presented in this paper allow us to establish relationships between the thermal input of the process itself and the mechanical and metallographic properties of the material produced.Open Access funding provided by Universidad Pública de Navarra. The authors acknowledge funding from the Basque Govern ment to the HARITIVE project [ZE-2017/00038], HARIPLUS project [ZE-2019/00352], QUALYFAM project [kk-2020/00042], and the European Institute of Innovation and Technology to DEDALUS project [reference ID 20094

    Experimental Investigation of the Influence of Wire Arc Additive Manufacturing on the Machinability of Titanium Parts

    Get PDF
    The manufacturing of titanium airframe parts involves significant machining and low buy-to-fly ratios. Production costs could be greatly reduced by the combination of an additive manufacturing (AM) process followed by a finishing machining operation. Among the different AM alternatives, wire arc additive manufacturing (WAAM) offers deposition rates of kg/h and could be the key for the production of parts of several meters economically. In this study, the influence of the manufacturing process of Ti6Al4V alloy on both its material properties and machinability is investigated. First, the mechanical properties of a workpiece obtained by WAAM were compared to those in a conventional laminated plate. Then, drilling tests were carried out in both materials. The results showed that WAAM leads to a higher hardness than laminated Ti6Al4V and satisfies the requirements of the standard in terms of mechanical properties. As a consequence, higher cutting forces, shorter chips, and lower burr height were observed for the workpieces produced by AM. Furthermore, a metallographic analysis of the chip cross-sectional area also showed that a serrated chip formation is also present during drilling of Ti6Al4V produced by WAAM. The gathered information can be used to improve the competitiveness of the manufacturing of aircraft structures in terms of production time and cost.This research was funded by the vice-counseling of technology, innovation, and competitiveness of the Basque Government grant agreement kk-2019/00004 (PROCODA project

    Symmetry and its application in metal additive manufacturing (MAM)

    Get PDF
    Additive manufacturing (AM) is proving to be a promising new and economical technique for the manufacture of metal parts. This technique basically consists of depositing material in a more or less precise way until a solid is built. This stage of material deposition allows the acquisition of a part with a quasi-final geometry (considered a Near Net Shape process) with a very high raw material utilization rate. There is a wide variety of different manufacturing techniques for the production of components in metallic materials. Although significant research work has been carried out in recent years, resulting in the wide dissemination of results and presentation of reviews on the subject, this paper seeks to cover the applications of symmetry, and its techniques and principles, to the additive manufacturing of metals.The authors are grateful to the Basque Government for funding the EDISON project, ELKARTEK 2022 (KK-2022/00070)

    Wall fabrication by direct energy deposition (DED) combining mild steel (ER70) and stainless steel (SS 316L): microstructure and mechanical properties

    Get PDF
    Direct energy deposition is gaining much visibility in research as one of the most adaptable additive manufacturing technologies for industry due to its ease of application and high deposition rates. The possibility of combining these materials to obtain parts with variable mechanical properties is an important task to be studied. The combination of two types of steel, mild steel ER70-6 and stainless steel SS 316L, for the fabrication of a wall by direct energy deposition was studied for this paper. The separate fabrication of these two materials was studied for the microstructurally flawless fabrication of bimetallic walls. As a result of the application of superimposed and overlapped strategies, two walls were fabricated and the microstructure, mechanical properties and hardness of the resulting walls are analyzed. The walls obtained with both strategies present dissimilar regions; the hardness where the most present material is ER70-6 is around 380 HV, and for SS 316L, it is around 180 HV. The average values of ultimate tensile strength (UTS) are 869 and 628 MPa, yield strength (YS) are 584 and 389 MPa and elongation at break are 20% and 36%, respectively, in the cases where we have more ER70-6 in the sample than SS 316L. This indicates an important relationship between the distribution of the materials and their mechanical behavior.The authors are grateful to the Basque Government for funding the ANDREA project ELKARTEK and the EDISON project, ELKARTEK 2022 (KK-2022/00070)

    Characterization of Inconel 718® superalloy fabricated by wire Arc Additive Manufacturing: effect on mechanical properties and machinability

    Get PDF
    Wire and Arc Additive Manufacturing has the potential to become an appropriate technique to produce large complex-shaped metallic parts. However, a post-processing machining operation is necessary to reach the final geometry. In this work, Inconel 718 walls were manufactured in a monitored environment and their microstructure and mechanical properties were characterised. Then, slot milling operations were performed to investigate the influence of cutting speed and machining direction. The conclusions drawn from this article can be used as a guide for a correct definition of strategies and milling parameters. It was observed that at higher cutting speeds a better surface quality and lower torques are obtained. Moreover, the main novelty of this work is that is shows the influence of the anisotropy of WAAM-Inconel 718 on its machinability. Milling along the torch's travel direction offers better dimensional tolerance values with lower cutting torques, being more favourable than machining in the building direction.The authors acknowledge the Basque Government for financing the HARIPLUS, HAZITEK 2019 program (ZL-2019/00352) and QUALYFAM project [kk-2020/00042]. The authors are also thankful to the Basque government for supporting the Basque university group on Advanced manufacturing ref: IT1337-19

    Analysis of the Wall Geometry with Different Strategies for High Deposition Wire Arc Additive Manufacturing of Mild Steel

    Get PDF
    Additive manufacturing has gained relevance in recent decades as an alternative to the manufacture of metal parts. Among the additive technologies, those that are classified as Directed Energy Deposition (DED) are characterized by their high deposition rate, noticeably, Wire Arc Additive Manufacturing (WAAM). However, having the inability to produce parts with acceptable final surface quality and high geometric precision is to be considered an important disadvantage in this process. In this paper, different torch trajectory strategies (oscillatory motion and overlap) in the fabrication of low carbon steel walls will be compared using Gas Metal Arc Welding (GMAW)-based WAAM technology. The comparison is done with a study of the mechanical and microstructural characteristics of the produced walls and finally, addressing the productivity obtained utilizing each strategy. The oscillation strategy shows better results, regarding the utilization rate of deposited material and the flatness of the upper surface, this being advantageous for subsequent machining steps.The authors acknowledge the Basque Government for financing the PROCODA project, ELKARTEK 2019 program (KK-2019/00004) and HARIPLUS project, HAZITEK 2019 program (ZL-2019/00352)) and to the European commission through EiT Manufacturing programme in DEDALUS project (reference ID 20094)
    corecore